

# Argonne

### INCITE PROPOSAL WRITING TIPS

Ray Bair, Chief Computational Scientist, CELS Argonne National Laboratory and The University of Chicago

June 20, 2008

### INCITE PROPOSAL WRITING TIPS



- INCITE at ALCF
- What is INCITE good for? ...Not so good for?
- INCITE Review Process
- Science Story Tips
- User's View of ALCF Systems
- User Agreements
- PI Obligations
- Additional Q&A



INCITE SUISING

Crunching Since 2004

# INNOVATIVE AND NOVEL COMPUTATIONAL IMPACT ON THEORY AND EXPERIMENT

- Solicits large computationally intensive research projects
  - to enable high-impact scientific advances
- Open to all scientific & engineering researchers and organizations
  - including universities, laboratories and companies
- Provides large computer time & data storage allocations
  - to a small number of projects for I-3 years

Does not provide funds for research

# 2008 INCITE PROJECTS ON BLUE GENE/P 111 MILLION HOURS ON BLUE GENE/P AT ALCF Argonne

| New Projects                                                                                                                               |            |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Project                                                                                                                                    | Hours      |
| Computational Protein Structure Prediction and Protein Design                                                                              | 12,000,000 |
| Computational Nuclear Structure                                                                                                            | 10,000,000 |
| Large-scale Simulations of Cardiac Electrical Activity                                                                                     | 846,720    |
| Modeling the Rheological Properties of Concrete                                                                                            | 750,000    |
| Study of Buoyancy-Driven Turbulent Nuclear Burning and Validation of Type Ia Supernova Models                                              | 21,000,000 |
| Molecular Simulation of Complex Chemical Systems                                                                                           | 750,000    |
| Blue Gene/P Plan 9 Measurements on Large Scale Systems                                                                                     | 1,000,000  |
| Massively Parallel Simulation of Combustion in Gas Turbines                                                                                | 4,000,000  |
| Predictions of Thermal Striping in Sodium Cooled Reactors                                                                                  | 5,000,000  |
| Lattice QCD                                                                                                                                | 19,600,000 |
| High Resolution Global Simulation of Plasma Microturbulence                                                                                | 2,000,000  |
| Climate-Science Computational End Station Development and Grand<br>Challenge Team                                                          | 1,000,000  |
| Kinetics and Thermodynamics of Metal and Complex Hydride<br>Nanoparticles                                                                  | 1,000,000  |
| Simulation and Modeling of Synuclein-based 'Protofibril Structures' as a Means of Understanding the Molecular Basis of Parkinson's Disease | 1,200,000  |
| Performance Evaluation and Analysis Consortium End Station                                                                                 | 4,000,000  |

| Renewal Projects                                                                                         |            |  |  |  |
|----------------------------------------------------------------------------------------------------------|------------|--|--|--|
| Project                                                                                                  | Hours      |  |  |  |
| Molecular Simulations of Surfactant Assisted<br>Aqueous Foam Formations                                  | 4,000,000  |  |  |  |
| High Fidelity LES Simulations of an Aircraft<br>Engine Combustor to Improve Emissions and<br>Operability | 1,377,000  |  |  |  |
| Reactor Core Hydrodynamics                                                                               | 14,000,000 |  |  |  |
| Water in Confined Spaces                                                                                 | 6,000,000  |  |  |  |
| Gating Mechanism of Membrane Proteins                                                                    | 1,500,000  |  |  |  |

# A LITTLE SKEPTICISM CAN BE HEALTHY Argonne Argonne

- These are my opinions based on experience with INCITE and other HPC proposal programs. Your mileage may vary.
- Help and advice is available from many sources, e.g., ALCF staff, DOE Program Managers, colleagues with INCITE projects.
- The story behind each science campaign is different.
  Use your best judgment when writing your proposal.

# WHAT IS INCITE GOOD FOR?



- High impact science and engineering with specific objectives
- Computationally intensive runs that you cannot do anywhere else
- Jobs that can use at least 25% of the system for hours to weeks
- Campaigns requiring millions of CPU hours
- Computations that are efficient on ALCF's system

# WHAT IS INCITE NOT SO GOOD FOR? Argonne Argonne

- Small projects, e.g., < 5,000,000 CPU hours
- Jobs that never use a large number of processors
- Computations that cannot be check-pointed
- Long interactive computations
- Work that must be co-scheduled with distributed resources
- Datasets bigger than the file system

Some of the above characteristics are negotiable, so make sure to discuss atypical requirements with ALCF

# INCITE PROPOSAL REVIEW



# Scientific Discipline Peer Review

- Scientific / engineering quality
- Proposed impact of the project
- Ability of the PI and team
- Computational plan
- Relation to the Office of Science mission-related research

# Computational Readiness Review

- Reasonableness and appropriateness of resource request
- Appropriateness of approach
- Technical readiness has code run at scale on target system?
- Progress in previous year (for renewals)

#### IT IS A SMALL WORLD...



- DOE program managers interact on many occasions, within the Office of Science, within DOE, and with other science agencies
- Advice is often sought and given
- So it could help to let the science program that funds your work know how significant your planned INCITE allocation will be to your work and their program

# Have your elevator speech ready

# SCIENCE & ENGINEERING STORY TIPS Argonne Argonne

#### Audience

- Computational science savvy senior scientists / engineers, faculty, and program managers
- Not everyone will be well versed in your approach

#### Story Elements

- What the problem is, and its significance
- Key objectives, key simulations/computations, project milestones
- Approach to solving the problem, its challenging aspects, preliminary results
- > Impact of a successful computational campaign the big picture
- Reasons why it is important to carry out this work now

INCITE has become quite competitive

#### **ADMINISTRATIVE TIPS**



## Project Title

- Pick a title you will be proud of seeing in many, many places
- Be succinct no kidding!

# Project Summary

- (4a) 2-paragraphs that cover the main points of the story
- (4b) 2-sentences suitable for the public (e.g., Science News, Scientific American, web, PowerPoint)

Note: the PI is unlikely to also be the Institutional Contact

# COMPUTATIONAL RESOURCE REQUEST

- How many years will your project need (1-3)?
- Things that will slow you down the first year
  - Porting and code development
  - Learning to use a new center
  - User agreements for all the institutions and people involved
  - Paperwork for proprietary use
- Mind the units!
  - Processor (Core) Hours for the system you will be running on
    - On Blue Gene you are charged for all cores in your partition
    - Large partitions are in increments of a rack (1,024 nodes, 4,096 cores)
  - Disk Storage in gigabytes for both Home and Scratch space
  - Mass (Tape) Storage in gigabytes or terabytes (specify)

# ALTERNATE VS. MULTIPLE FACILITIES



- If your project needs a single primary resource
  - Identify the primary resource in (5a)
  - Identify an alternate resource in (5b) optional
- If your project needs multiple primary resources
  - Identify each of the primary resources in (5a)
    - By adding resources for the same year
  - Identify any alternate resources in (5b)
  - Describe your need for multiple resources in sections (8)
     and readiness in (9)

### COMPUTATIONAL APPROACH



- Essential to show experience and credibility in this section
- Programming Languages, Libraries and Tools used
  - Check that what you need is available on the system
- Description of underlying formulation
  - Can be short or long, depending on how well known your application is
  - Don't assume reviewers know all the codes

#### COMPUTATIONAL PLAN



## Application Packages

- List of all the software application packages/suites to be used

  Note: Long lists may reduce credibility
- What will be used to set up computations (and where)?
- What are the codes for the main simulation/modeling?
- What will be used to analyze results (and where)?

### APPLICATION CREDENTIALS



- Port your code before submitting the proposal
  - Check to see if someone else has already ported it
  - Request a start up account if needed
- It is very hard to embarrass a 163,480 processor system
  - Prove application scalability in your proposal
  - If at all possible, run example cases at full scale
  - If you cannot show proof of runs at full scale, then provide a very tight story about how you will succeed at full scale

# AVAILABLE BG/P APPLICATIONS



|                    |                          | Perf | Globally  | Makefile |
|--------------------|--------------------------|------|-----------|----------|
| <b>Application</b> | Field                    | Info | Available | or Help  |
| FLASH              | Astrophysics             | Y    | N         | Y        |
| MILC,CPS           | LQCD                     | Y    | Y         | Y        |
| Nek5000            | CFD, nuclear energy      | Y    | N         | Y        |
| Rosetta            | Protein Structure        |      | N         | N        |
| ANGFMC             | <b>Nuclear Structure</b> |      | N         | N        |
| Qbox               | Phys Chem                | Y    | N         | N        |
| LAMMPS             | Molecular Dynamics       |      | Y         | Y        |
| CHARMM             | Molecular Dynamics       | Y    | Y         | Y        |
| NAMD               | Molecular Dynamics       | Y    | Y         | Y        |
| AVBP               | Combustion               | Y    | N         | N        |
| GTC                | Fusion                   | Y    | N         | Y        |
| Allstar            | Life Science             |      | N         | N        |
| CPDM, CP2K         | Molecular Dynamics       |      | N         | N        |
| CCSM3              | Climate                  |      | N         | Y        |
| HOMME              | Climate                  | Y    | N         | Y        |
| WRF                | Climate                  |      | N         | Y        |
| Amber9             | Molecular Dynamics       |      | Y         | Y        |
| NWChem             | Chemistry                |      | N         | Y        |
| enzo               | Astrophysics             |      | N         | Y        |
| Falkon             | Computer Science/HTC     |      | Y         | Y        |

#### BG/P PROGRAMMING MODELS



# Parallel Programming System

- MPI (MPICH2) is the work horse on Blue Gene ARMCI/Global Arrays is available
- OpenMP on nodes; I thread per core
- Some groups rolled their own at lower level, e.g., QCD

# Special needs? Inquire

e.g., Python, custom kernel

# TOOLS/LIBRARIES/PACKAGES SUPPORTED BY ALCF



PETSc HPC Toolkit mercurial

BLAS fftw2, fftw3 svn

LAPACK LIBGOTO gcc

GOTOBLAS SCALAPACK

mass/massv p3dfft

ESSL hypre

HDF5 MUMPS

PNETCDF spooles

Totalview SuperLU

TAU Coreprocessor

### COMPUTATIONAL CAMPAIGN



- Describe the kind of runs you plan with your allocation
  - L exploratory runs using M nodes for N hours
  - X big runs using Y nodes for Z hours
  - P analysis runs using Q nodes for R hours
- Big runs often have big output
  - Show you can deal with it and understand the bottlenecks
  - Understand the size of results, where you will analyze them, and how you will get the data there

#### PARALLEL PERFORMANCE

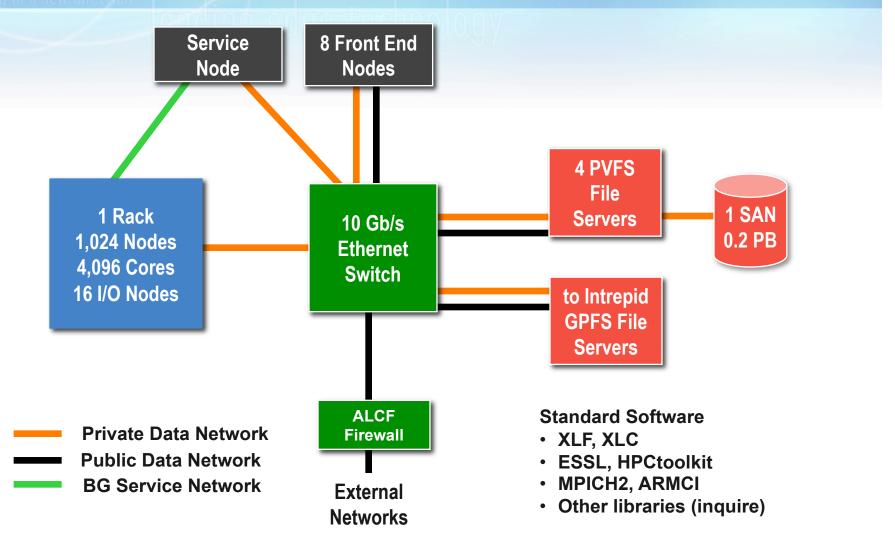
#### DIRECT EVIDENCE IS REQUIRED



- Pick the approach relevant to your work and show results
  - Strong Scaling Data
    - Increase resources (nodes) while doing the same computation
  - Weak Scaling Data
    - Increase problem size as resources are increased
- Performance data should support the required scale
  - Use similar problems to what you will be running
  - Show that you can get to the range of processors required
  - Best to run on the same machine, but similar size runs on other machines can be useful
  - Describe how you will address any scaling deficiencies
- Be aware of scaling data from other groups and literature

## I/O REQUIREMENTS




- Restart I/O Application initiated program restart data
  - I/O technique used, e.g., MPI I/O, HDF5, raw
  - Number of processors doing I/O, number of files
  - Sizes of files and overall dump
  - Periodicity of the checkpoint process
- Analysis I/O Application written files for later analysis
  - ▶ I/O technique used, e.g., pNetCDF, pHDF5
  - Number of processors doing I/O, number of files
  - Sizes of files and overall dump
- Archival I/O Data archived for later use/reference
  - Number and sizes of files
  - Retention length
  - If archived remotely, the transport tool used, e.g., GridFTP

#### BLUE GENE/P "INTREPID" SYSTEM 2008: 8 RACKS PRODUCTION, 32 RACKS EARLY SCIENCE 2009: 40 RACKS PRODUCTION **Data Analytics Production in Fall 2008** Cluster 111 TF 10 Front End Service **208 GPUs** Node **Nodes** 832 cores 3.2 TB Memory **Production in 2009** 136 Data 17 SANs File Servers 8 PB 40 BG/P Racks 10 Gb/s 40,960 Nodes 8 Home (GPFS) **Ethernet** 163,840 Cores File Servers **Switch** 4 SANs **80 TB Memory** 0.8 PB 640 I/O Nodes 16 Data (GPFS) **File Servers ALCF Standard Software Private Data Network Firewall** XLF. XLC **Public Data Network** • ESSL, HPCtoolkit MPICH2. ARMCI **BG Service Network** External Other libraries (inquire) **Networks**

# SURVEYOR BG/P SYSTEM

PORTING, TESTING, DEVELOPMENT





#### **USER AGREEMENTS**



# Nonproprietary Research

- Substantial results published in open literature or reports
- Federally-funded user agreement if any US Federal funds
- Privately-funded user agreement for industry, etc.
- INCITE Program User Agreement is not negotiable

# Proprietary Research is permitted

- Results retained by researcher or their organization
- Full cost recovery. Data protection considerations
- Carefully read DOE guidelines, and begin discussions early

#### Process

- Each institution must sign INCITE Program User Agreement
  - by one who can commit the institution, e.g., attorneys
- Every user must have their own account, and must individually complete a facility user agreement

# KNOW WHAT KIND OF INFORMATION YOUR PROJECT USES AND GENERATES Argonne Argonne

- Laws regulate what can be done on these systems
  - Also LCF systems have cybersecurity plans that bound the types of data that can be used and stored on them
  - (see www.alcf.anl.gov/support/usingALCF/docs/dataprivacy.php)
- Some kinds of information we cannot have at ALCF
  - Personally Identifiable Information (PII)
  - Information requiring an export control license
  - Classified Information or National Security Information
  - Unclassified Controlled Nuclear Information (UCNI)
  - Naval Nuclear Propulsion Information (NNPI)
  - Information about development of nuclear, biological or chemical weapons, or weapons of mass destruction
- Inquire if you are unsure or have questions

### PI OBLIGATIONS



- Provide quarterly status updates (on supplied template)
  - Milestone reports
  - Publications, awards, journal covers, presentations, etc. related to the work
- Provide highlights on significant science/engineering accomplishments as they occur
- Submit annual renewal request
- Complete annual surveys
- Encourage your team to be good citizens on the computers
- Use the resources for the proposed work
- Let ALCF know about problems and issues

# WHEN YOU WIN THE INCITE AWARD



- Notice comes from DOE INCITE Program Manager,
   Barbara Helland
- Welcome and startup information comes from Argonne
  - Agreements to sign. How to get accounts.
  - Startup workshop is scheduled ASAP
- User Support is geared to help you succeed
- Catalysts provide expert-to-expert assistance
- Performance Engineering and Data Analytics team help you get the most from your allocation

### INCITE 2009



Call for proposalsMay 16

Proposals due
August I I

Instructions
http://hpc.science.doe.gov

ALCF Information www.alcf.anl.gov

Getting Started on BG/P www.alcf.anl.gov/support /gettingstarted/

ALCF Service desk support@alcf.anl.govI-866-508-9181

# ADDITIONAL QUESTIONS?



